Turuosa ülempiirid
24h turumaht
10071
Aktiivsed krüptovaluutad
58.26%
Bitcoin Jaga

DeepSeek представил технологию сжатия текста для ИИ

DeepSeek представил технологию сжатия текста для ИИ


Forklog
2025-10-21 12:06:32

Китайский ИИ-стартап DeepSeek представил новый мультимодальный ИИ, способный обрабатывать большие и сложные документы с задействованием значительно меньшего количества токенов. DeepSeek-OCR применяет визуальное восприятие как средство сжатия информации. Система стала результатом исследования «роли визуальных энкодеров» для сжатия текста в больших языковых моделях (LLM). Благодаря такому подходу нейросети способны обрабатывать огромные объемы информации без пропорционального роста затрат на вычисления. «С помощью DeepSeek-OCR мы продемонстрировали, что сжатие текста через визуальные представления позволяет сократить количество токенов в 7–20 раз на разных стадиях контекста. Это открывает перспективное направление для решения проблемы длинной истории в LLM», — заявили в компании. DeepSeek-OCR состоит из двух основных компонентов: DeepEncoder — кодировщик; DeepSeek3B-MoE-A570M — декодер. Первый служит основным вычислительным ядром модели. Он сохраняет низкую активность в ходе обработки изображений высокого разрешения, одновременно достигая существенного уровня сжатия. Это позволяет сократить количество токенов. Декодер — модель Mixture-of-Experts с 570 млн параметров — отвечает за восстановление исходного текста. Архитектура делит нейросеть на несколько независимых подсетей — «экспертов», каждый из которых специализируется на своей части входных данных. Вместе они решают общую задачу. DeepSeek-OCR способна анализировать сложно структурированный визуальный контент, таблицы, формулы и геометрические схемы. По словам компании, это делает модель особенно полезной для применения в финансовой сфере и научных исследованиях. Она отметила, что DeepSeek-OCR достигала 97% точности декодирования. При коэффициенте 20х модель сохраняла около 60%. Это подчеркивает ее способность не терять информацию даже при экстремальном уровне сжатия. На OmniDocBench — эталонном тесте для оценки понимания разнообразных документов — DeepSeek-OCR превзошла ведущие модели оптического распознавания текста вроде GOT-OCR 2.0 и MinerU 2.0. При этом она использовала значительно меньше токенов. Напомним, в августе стартап обновил свою флагманскую ИИ-модель V3.


Loe lahtiütlusest : Kogu meie veebisaidi, hüperlingitud saitide, seotud rakenduste, foorumite, ajaveebide, sotsiaalmeediakontode ja muude platvormide ("Sait") siin esitatud sisu on mõeldud ainult teie üldiseks teabeks, mis on hangitud kolmandate isikute allikatest. Me ei anna meie sisu osas mingeid garantiisid, sealhulgas täpsust ja ajakohastust, kuid mitte ainult. Ükski meie poolt pakutava sisu osa ei kujuta endast finantsnõustamist, õigusnõustamist ega muud nõustamist, mis on mõeldud teie konkreetseks toetumiseks mis tahes eesmärgil. Mis tahes kasutamine või sõltuvus meie sisust on ainuüksi omal vastutusel ja omal äranägemisel. Enne nende kasutamist peate oma teadustööd läbi viima, analüüsima ja kontrollima oma sisu. Kauplemine on väga riskantne tegevus, mis võib põhjustada suuri kahjusid, palun konsulteerige enne oma otsuse langetamist oma finantsnõustajaga. Meie saidi sisu ei tohi olla pakkumine ega pakkumine